论文翻译Water uptake by barley roots as affected by the osmotic and matric potential in the rhizosphere根际中大麦根系吸收水分受渗透和基质势人影响

Water uptake by barley roots as affected by the osmotic and matric potential in the rhizosphere

Biomedical and Life Sciences Plant and Soil
Volume 94, Number 1, 143-146, DOI: 10.1007/BF02380596
U. Schleiff

Google 翻译

http://translate.google.com.tw/#
————————————–
Bad translation by xuexx at 110310

植物和土壤94,143-146(1986)                 Ms. 6080
9 1986 Martinus Ni/hoffPublishers, Dordrecht 在荷兰出版。

根际中大麦根系吸收水分受渗透和基质势人影响
U. SCHLEIFF
ETH-Zi~rich Department of Crop Science, CH-830 7 Eschikon-Lindau, 瑞士
1985年8月30日收到。1985年12月修订。
关键词 大麦 根际 耐盐性 土壤水势

摘要
盐碱土中根系对水的吸收率受到抑制的同时,根系周围土壤基质势和渗透水势也降低。遗憾的是,没有可靠的工具,可用于直接测量根际土壤中根的水吸收率降低的效果。本文展示了不同水势和基质势组合对根际土壤中大麦根系水吸收率的影响一些植物实验的结果。

降低土壤基质水势比起降低土壤渗透水势,使水吸收率降低到一个更大的程度。根据本实验的结果,砂土的总水势和当根系处在不同的基质势和渗透势时的水吸

简介
当根系对水分的吸收发生在盐碱土中时,近根系土壤水势下降更多,比起远离根系土壤。因此,在水耗尽期,根暴露在土壤基质势和水势,本质上不同于大块土壤。为了提高我们对生长在盐碱土中作物的水供应过程的理解,减少在根周围土壤渗透基质水势不得不定量地决定。
从各个田野和盆栽试验,得出的结论是,在一般情况下,相等的降低渗透和基质土壤水势对影响水供应和作物生长有一人相似的程度。因为作物抵抗土壤盐碱度和渗透胁迫的能力显著不同,这是众所周知,这个概念可能不适用所有作物。一些耐盐碱作物例如甜菜和大麦可以调整他们面子水势应对渗透胁迫,因此,渗透性土壤水分胁迫比起基质土壤水分胁迫对它们的水供应较少影响。基于这个假设这个实验的目的就是研究根系在不同的总土壤水势下从土壤中的水分吸收情况。

材料和方法
生长在一升的装有轻质土壤(370g黄土和1230g沙子的混合)盆的大麦植株。盆有 盖子覆盖,盖上有一个为了幼苗刺穿的小洞。盆的水容量是体积的20%。植物生长周期共分为两个阶段,最初栽培期36天,随后的实验阶段用4天(表1)。最初的栽培阶段是为了获得有茂密根系的良好的成年植株。被选择盐碱化处理的植物,被适应于加入10mmol/l氯化钠到水中的含盐生长环境,用于在最初的栽培期灌溉植物。被选择研究降低土壤基质势的影响的植株,不接受氯化钠。在在初始阶段结束时,由于土壤含水量下降到了3-4%,对应的土壤基质势0.1- 0.15兆帕,所有的植物枯萎。植物枯萎发生在相对高基质势中,因为植物暴露到干旱的生长环境中(30-35~29-40%空气相对温度),根密度是极端高(~15cm/cm^3).芽重量是1.4+-0.1g DM/shoot ,根重量1.0*0.1g DM/根(5盆平均数)

表1.
不同处理的氯化钠添加量在最初栽培期和处理期

实验期的目的是为了测量大麦根系暴露到不同渗透和基质土壤水势的根际土壤中时的水分吸收率。因此这个实验期开始靠用不同盐浓度(表1)150ml水/盆灌溉植株接近盆容量.灌溉3小时盆重被确定,植株暴露到模拟上面描述的干旱环境中。在接着的4天水消耗期间,土壤水损失(蒸发土壤水)由几次盆称重值决定。土壤基质和渗透水势被计算从土壤水容量。土壤的pF曲线靠暴露样品到相应的吸力而获得,较低的值被应用相应的压力。附加实验详情已经被报告。

结果和讨论
a)土壤水分状况的过程
相关的一些具有代表性的盆的土壤水势过程观测将被提交。在实验的开始(fig.1,0h),所有盆的土壤基质水势是0.01Mpa ,土壤水容量大约15%。土壤溶液浓度不同导致在土壤渗透和总水势排列从水势0.01Mpa到1.0Mpa的不同。
在随后的水消耗期,土壤水势的显著不同被观察到。在非盐碱对照处理的土壤水容量下降到4%,在照明25小时后,相当于基质势的值为0.06Mpa.到实验结束时,土壤基质势的值达到0.3Mpa ,这将引起植株严重的萎蔫。
在用包含25mmol氯化钠/升的水灌溉盆时,土壤基质水势过程概念股最初25小时的照明相似。到实验结束时,基质势的值大约达到0.2Mpa.由于在最初栽培中,这个处理的土壤被轻微地盐碱化,更多的盐将被加入以灌溉水,植株已经被暴露到土壤的全水势,在实验开始的0.5Mpa。在接着的25h,the ~kT-value降低到大约1.2Mpa,主要是由于增加的土壤溶液盐浓度。在实验末,the ~T-Value大约是3.0Mpa,其中2.8Mpa是渗透势,仅仅有0.2Mpa是基质势。

b)根的水吸收
根的水吸收率的计算是基于1gDM形成一个长有150m的根的一个根土的假设。在实验期间根密度的增加被认为是不重要的对于水吸收,因此,不予考虑。
在水消耗期,土壤水势增加反过来影响根的水分吸收率。fig2展示了土壤fiT和暴露于非盐碱土壤和两个盐碱土壤的根的水分吸收率的关系。在第一个水消耗期(0-11小时)的平均的水吸收率改变在无盐碱的2.1 ,低盐碱的2.3和高盐碱的1.7.它是明显的,非常相似的吸收率发生在在非盐碱和低盐碱的处理的土壤中,本质上不同于他们的总水势。这些土壤T-Values的不同是唯一地被他们的滲透势值的不同所引起,然而基质势值是高的。显然,土壤渗透势对于根系水分吸收是较低重要性的。
在第二个照明期间(11-25小时),水分吸收率趋向更高比在第一时期,因为在温室中的空气温度是更高了。最高的平均水吸收率3.3是被发现在非盐碱盆,在土壤t值减少从15kpa到60kpa.在低盐碱盆中,水吸收率轻变低,然而t值的减少是显著的(从0.7到1.2Mpa).最低的水吸收率1.5被观察到了在高盐碱环境,在那,t值减小从1.2到1.5Mpa.这些数据也显示土壤t值对于描述植物水供应不是今人满意的标准。在第三个照明期,水吸收率的对比也显示出了在1.1到1.3时相似的吸收率发生在非常不同的土壤水势中。
这些结果是相对于其他作者的发现,那些发现在作物中相似的水供应减少人,在减少的土壤的t值,t值独立的组件。几个原因能解释这些不同的结果。在这个实验中,一个耐受盐的作物被选择,它能够达到大的程度,来补偿在根际的渗透胁迫。其它的作者曾经选择豆子、柑橘和苜蓿,它们有较小的耐盐性。另一个原因可能是土壤的纹理与非常多的根结合在实验中。砂土包含很少的水,基质势0.1Mpa,甚至更低。相同程度渗透势的值能够被在盐碱和砂土中达到相对高土壤水分,但许多植物水分吸收因此轻微降低。
在这个实验中,水分吸收中基质势的值的作用可能是更引人注目的,由于高的根密度,根际基质势唯一地被测量,而非土壤层的基质势的平均值。这意味着植物供水不能靠来处外界根际和根生长进入非根际土壤的水通量提高。

总结本次实验的结果,土壤渗透和基质水势成分影响所有作物水分吸收到相同的程度,这是今人怀疑的。

————-
original text
http://www.springerlink.com/content/b36244880520810x/

Plant and Soil 94,143-146 (1986).
9 1986 Martinus Ni/hoffPublishers, Dordrecht. Printed in the Netherlands.
Ms. 6080
Water uptake by barley roots as affected by the osmotic and
matric potential in the rhizosphere
U. SCHLEIFF
ETH-Zi~rich Department of Crop Science, CH-830 7 Eschikon-Lindau, Switzerland
Received 30 August 1985. Revised December 1985.
Key words Barley Rhizosphere Salt tolerance Soil water potential
Summary The water uptake rates of roots in saline soils are depressed by the simultaneously
decreasing matric (r and osmotic (~o) water potentials in the soil surrounding the roots
(rhizospheric soil). Unfortunately there are no reliable tools available for direct measurements
of the effect of decreasing water potentials in the rhizospheric soil on the uptake rate of soil
water by roots. This paper presents some results of a vegetation technique for studying the
effect of different combinations of osmotic and matric water potentials in the rhizospheric
soil on the water uptake rates of barley roots.
Water uptake rates were reduced to a greater extent by decreasing soil matric water potentials
than by decreasing soil osmotic water potentials. According to the results of this experiment,
there was no relationship between the total soil water potential (r of a sandy soil
and the water uptake rates when the roots were exposed to different combinations of ~M and
fro-
Introduction
When water uptake by roots occurs in saline soils, the water potential of the soil near the
roots (rhizospheric soil) drops much more than in the soil further away from the roots. Thus,
during a period of water depletion roots can be exposed to soil osmotic and matric water
potentials that differ essentially from the bulk soil. In order to improve our understanding
of the processes of water supply to crops growing in saline soils, the effects of decreasing
osmotic and matric water potentials in the soil surrounding the roots have to be determined
quantitatively.
From various field and pot experiments, it was concluded that, in general, equivalent
decreases in osmotic and matric soil water potentials affect the water supply and the growth
of crops to a similar degree 2,3,4’5’8’9. Since it is well-known that crops differ significantly
in their ability to overcome soil salinity resp. osmotic stress, this concept might not be applicable
to all crops. Some salt tolerant crops such as sugar beets and barley may adapt their
leaf water potentials to osmotic stress and therefore their water supply should be less affected
by osmotic soil water stress than by matric soil water stress. Based on this assumption it was
the aim of this experiment to study the root water uptake from a soil with various combinations
of the total soil water potentials.
Materials and methods
Barley plants (one plant/pot, cv. Aura) were grown in l-liter pots filled with a light-textured
soil (mixture of 370g loess and 1230g sand). The pots were covered with a lid, in which a
small hole had been pierced for the seedling. The water capacity of the pots was 20 Vol.%.
The total growth period of the plants was divided into two periods, an initial cultivation
143
144 SHORT COMMUNICATION
phase of 36 days and a succeeding experimental phase of 4 days (Table 1). The aim of the
initial phase of cultivation was to obtain well grown plants having a dense root system. Plants
selected for salinization treatments were adapted to saline growth conditions by adding 10 mmol
NaC1/I to the water and used for irrigating the plants during the initial phase of cultivation.
Plants selected for studying the effect of decreasing soil matric potential did not received NaCI.
At the end of the initial phase, all plants were wilting due to a drop in soil water content to
3-4 Vol.% corresponding to a soil matric potential of–0.1 to –0.15 MPa. The wilting of the
plants occurred at these relatively high matric potentials since the plants were exposed to arid
growth conditions (30-35~ 29-40% relative air humidity) and the density of the roots was
extremely high (~ 15 cm/cm3). The shoot weight was 1.4 -+ 0.1 g DM/shoot and the root weight
1.0 x 0.1 g DM/root (average of 5 pots).
Table 1. Sodium chloride additions (mmol/pot) to the various treatments during the initial
phase of cultivation and during the treatment phase
Treatments (mmol NaC1/pot)
NaCl-conc. of water
(retool~l) Non saline 0 25 150 300 450
Initial phase
of cultivation 0 8 8 8 8 8
Treatment phase 0 0 3.75 22.5 45 67.5
Total 0 8 11.75 30.5 53 75.5
The aim of the experimental phase was to measure the water uptake rates of barley roots
exposed to a rhizospheric soil with different combinations of osmotic and matric soil water
potentials. The experimental phase was therefore begun by irrigating the plants near to pot
capacity with 150ml/pot water of different salt concentrations (Table 1). Three hours after
irrigation the pot weight was determined and the plants exposed to simulated aridity as described
above. During the following 4 days period of water depletion, the water losses of the
soil (= transpired soil water) were determined by weighing the pots several times. The matric
and osmotic water potentials of the soils were calculated from the soil water contents. The
pF-curve of the soil was obtained by exposing the samples to a corresponding suction, the
lower values (–80 to –1500kPa) by applying corresponding pressures. Additional experimental
details have already been reported 7.
Results and discussion
a) Course of the soil water status
Observations related to the course of the soil water potential in a few representative pots
will be presented. At the beginning of the experiment (Fig. 1, 0 h), the soil matric water potential
of all pots was –0.01 MPa at a soil water content around 15 Vol.%. Differences in the salt
concentrations of the soil solutions resulted in great differences in the osmotic and total water
potentials of the soil ranging from total water potentials of– 0.01 MPa to — 1.0 MPa.
During the succeeding periods of water depletion significant differences in the course of the
soil water potentials were observed. The soil water content in the nonsaline treatment dropped
after 25 hours of illumination to about 4 Vol.%, which corresponds to a ~PM-value of –0.06 MPa.
By the end of the experiment, the ~M-value of the soil had reached –0.3 MPa which caused
severe wilting of the plants.
In the pot irrigated with water containing 25 mmol NaC1/1, the course of the soil matrix
water potential was very similar during the first 25 h of illumination. By the end of the experiment,
a ~M-Value of about–0.2MPa had been reached. As the soil of this treatment was
slightly salinized during the initial phase of cultivation and further salts were added with the
irrigation water, the plants had already been exposed to a total water potential of the soil
(r of –0.5 MPa at the beginning of the experiment. During the following 25 h, the ~kT-value
SHORT COMMUNICATION 145
decreased to about –1.2 MPa, mainly due to the increasing salt concentration of the soil
solution. At the end of the experiment the ~T-Value was about–3.0 MPa,- 2.8 MPa of which
were osmotic and only –0.2 MPa were matric potential.
In the high saline treatment (150mmol NaCl/1), the drop in the ffM-value of the soil was
significantly lower. Following an illumination period of 25 h, the ~M-value was –0.02 MPa
which was significantly higher than in the nonsaline and lowsaline treatments. As the water
uptake rates of the plants were significantly reduced, the ffM-value had dropped to about
only — 0.04 MPa by the end of the experiment. Due to the salts dissolved in the soil solution,
the ~0T-Value of this soil had already reached — 1.0 MPa at the beginning of the experiment,
dropped to — 1.5 MPa 25 h later and reached — 2.5 MPa by the end of the experiment.
b) Water uptake by roots
The calculation of the water uptake rates by the roots is based on the assumption that a
root mass of 1 g DM forms a root length of 150 m 6, An increase in the rooting density during
the experimental phase was supposed to be of little importance for the water uptake and,
therefore, not taken into account.
During a period of water depletion, the water potential of the soil decreases which in turn
affects the water uptake rate of roots. Fig. 2 shows the relationship between fiT of the soil and
-o,o, 4 /
-qo2
-qo3
-~176 \ -q30L~ ‘ ~”‘– ~
0
irrigation water :
2×5 15xOmeq NoCI/I
\ \ I: 1
\ \1
[Val.*l.]
-15
– ,2,s
8
-7,s _~
-2s ~n
, tl , , , -0
-q2 -0.4-0.5 -10 -15 -2’0 -2; -3′.0 [MPG]
total water potential at soil
Fig. 1. Relationship between decreasing soil water (due to water depletion by roots) and total
water potential of the rhizospheric soil at various salinity levels.
cm r~t.10h J
saline
5 _~-
1-
o .0.’2 .; .& _o’.~ .,; .,.? .,; .,; _,:~ -2’otMPo] g
total soil water potential
Fig. 2. Water uptake rates of barley roots in relation to the decreasing water potential of the
rhizospheric soil due to root water uptake at different salinity levels.
illumi~lion inle~ol:
x 0 tO llh
25 rnt:~zI I~k3CI/I irrig waler 9 11 10 25h
9 ?25 tO 39h
S o 39 lo 53 h
146 SHORT COMMUNICATION
the water uptake rates of the roots exposed to a nonsaline soil and two salinized soils. The
average water uptake rates during the first water depletion period (0-11 h) varied between
2.1 ~1 in the nonsaline, 2.3 t~l in the lowsaline and 1.7 ~l/cm root. 10 h in the highsaline treatment.
It is obvious that the very similar uptake rates in the nonsaline and low saline treatments
occurred in soils differing essentially in their total water potentials. The differences in the
~/T-Values of these soils were exclusively caused by differences in their Co-values, whereas the
CM-Values were high (> — 0.015 MPa). Obviously the soil osmotic potential was of low importance
for the water uptake by the root system.
During the second illumination interval (11-25 h), the water uptake rates tended to be
higher than during the first period since the air temperature in the greenhouse was higher.
The highest average water uptake rate of 3.3#1 was found in the nonsaline pot at a ~T-Value of
the soil decreasing from — 15 kPa to –60 kPa. In the lowsaline pot the water uptake rate was
slightly lower (2.7~1/cm root. 10h), whereas the decrease in the ,VT-Value was significant
(from –0.7 to –1.2 MPa). The lowest water uptake rate of 1.5 ~1 was observed in the highly
saline soil in which the CT-Value decreased from — 1.2 to — 1.5 MPa. These data show too that
the CT-Values of the soils were unsatisfactory criteria for characterizing the water supply to
the plants. The comparison of the water uptake rates during the third period of illumination
shows also that very similar uptake rates of 1.1 to 1.3 ul occurred in soils of very different soil
water potentials (~T from –0.1 MPa to — 1.6 MPa).
These results are in contrast to the findings of other authors 3’s’9, who found similar reductions
in crop water supply at decreasing CT-Values of the soil, independent of the components
of the qJT-Value. Several reasons could be responsible for these different results. In this
experiment, a salt tolerant crop was chosen, which was able, to a great extent, to compensate
for the osmotic stress in the rhizosphere. The other authors had selected beans, citrus and
alfalfa, which are less salt tolerant. Another reason could have been the texture of the soil
in combination with the extremely high rooting density in this experiment. A sandy soil contains
little water at a r of- 0.1 MPa or even lower. A ~0 o-value of the same degree can
be reached in a saline, sandy soil at relatively high soil water contents, but the water uptake of
many plants is thereby reduced only slightly.
The effect of lower qJM-Values on the water uptake may have been more dramatic in this
experiment as, due to the high rooting density, the qJM-Value of the rhizosphere exclusively was
measured and not the qJM-Value of a soil layer in average. This means that the water supply
of the plants could not be improved by a water flux from outside the rhizosphere and by roots
growing into nonrhizospheric soil.
In summarizing the results of this experiment, it is doubtful that the osmotic and matric
component of the soil water potential affect the water uptake of all crops to the same degree.
References
1 Ayers R S and Westcot D W 1976 Water Quality for Agriculture. FAO, Rome, p. 20.
2 Bresler E, McNeal B L and Carter D L 1982 Saline and sodic soils. Advanced series in
agricultural sciences 10, Springer, Berlin-Heidelberg-New York, 139-43.
3 Dirksen C 1985 Irrig. Sci. 6, 39-50.
4 HanksRJetal. 1978 Irrig. Sci. 1,47.
5 Plessis du H M 1985 Irrig. Sci. 6, 51-61.
6 Russell R S 1977 Plant root systems – their Function and Interaction with the Soil.
McGraw-Hill Book Company (UK) Limited, London, pp 9-29.
7 Schleiff U 1983 lrrig. Sci. 4,177-189.
8 Wadleigh C H and Ayers R S 1945 Plant Physiol. 20,106-132.
9 Wadleigh C H 1946 Soil Sci. 61,225-38.

论文:生命、基因工程与进化

一、生命(life)

1.1理想化方法

正如卡诺(N.L.Sadi Carnot,1796-1832)在研究热机时,用理想热机来研究热机,揭示了热机的本质规律。在分析生命时,我们也可以去用一种理想生命,去研究生命的最本质的规律。

理想化方法的优点:去除尽可能多的非本质因素及它们的干扰,更容易地去研究揭示研究对象的规律。故理想化方法,也即是一种本质化方法:从对象的本质去研究对象。
在生命研究中应运用理想化方法:对生命概念的模糊,源自没有从生命的本质角度去认识生命。

所以,我们应该建立一种作为生命的本质的概念定义,来更好地把握生命。

1.2生命

我们看到,在生命与非生命的临界,生命与非生命的界限模糊了,或者说得大胆些就是消失了!——例如我们的病毒,它是生命还是不是?

分析地深入,我们发现,生命与非生命没有本质上的差别,可以说,生也可看出死,死的也可看出生。

但为了分析方便,还是得做出对生命的一种程度的界定的。

1.3生命的分类

生命可分有机生命与无机生命。

自然有机生命:我们当前普遍认为生命的生命。在当前,已经经由长期进化,达到了相当高的程度。

人工有机生命:依靠自然有机生命的原理、结构,人工方式构建来的生命。但目前,还很低级,或者说,人类现在还没这种能力。

人工改造的有机生命:人类现在做不到人工有机生命,但人工改造的有机生命还是有所成绩的。也就是基因工程的工作。

人工无机生命:也就是机器生命。人类现在已经也略有所成。但与自然有机生命相比,简直就是原生动物与人类相比,或许连这也比不上。

人工综合生命:指由人工综合了有机无机的方式制作的生命。

人工生命:基于现在的科学研究,以后的生命形式、物理基础,可能也不是有机或电子,而是光子之类,或者它们的综合。

二、基因工程

基因工程:在人类对自然有机生命的原理、物理结构有所了解、认识后,运用人工的方法,对自然有机生命进行改造,从而产生出某种形式的新生命。

2.1基因工程的局限性:

基因工程只在改造自然有机生命,而非建造自然有机生命。

这是由人类当前科技水平决定的。

2.2基因工程的前景:

可以想象:随着人类的科技水平的提高,人类可以一定程度的去人工建造有机生命。而非仅仅是去在自然有机生命上去修修补补。

2.3基因工程的安全问题:

2.3.1广义免疫原理:

免疫耐受:不同事物长期共同生存于一个环境,从而互相适应、相互兼容。

(证明:用进化论。如果无法兼容的,则最终作为劣者而为淘汰,从而从系统中剔除。)

免疫应答:没有经过长期共同生存锻炼的事物,相互间没有适应而无法兼容。从而很可能会发生某种形式的免疫应答。

免疫应答的种类:
1、免疫剔除:即使经历一段时间,新的非己无法适应,从而非己死亡。
2、免疫耐受:经历一定时间后,非己与自己相互适应而共存。他们可能不互利,但又无法消灭对方。
3、灭亡:非己强大,自己无法适应而死亡。

广义免疫原理本质上也是关于进化论的:能够共同生存的即是适应的,从而生存下来,发生免疫耐受;不能共同生存的即无法适应,从而为淘汰,发生免疫应答。

所以可以看到:本质上,免疫是关于不同事物长期共同生存的结果问题。

2.3.2组合爆炸:

由于多维及多维互作,或者说多控制变量与变量互作,导致系统复杂度超级高。达到对于现今的人类计算能力无法解决的程度。或者,也是根本仅仅靠单纯计算无法解决的。而只有依靠某种的新算法可以一定程度上解决。

算法上说的NP-complete问题应该就是说这回事。

2.3.3广义免疫原理看基因工程的安全问题:

从广义免疫原理看,基因工程制作出一些新的生命形式,它们因为未经长期与已有事物共存,从而,必然地,要有一定某种形式与程度的免疫应答,结果可能好也可能坏。

如果产生了新事物但没有好或坏的免疫反应,这反而有些不正常。
1、可能是这个新事物并不新,也就并非非己。2、可能这就是特例吧:作为小概率事件是可以相信它的存在的。

2.3.4广义免疫原理的推广应用:

可以说,基因工程的安全问题只是这类问题的一个代表而以,或许,也并非比其它例子更典型。

可以说,一切的新事物,一切的初来乍到某新环境的事物,大都都要发生某种免疫反应。结果也或好或坏。

2.3.5广义免疫原理的应用实例:

2.3.5.1工业革命:

工业革命:机器革命,蒸汽机的广泛应用。

机器作为一个人类发明的新事物,被人们运用。作为新事物,它也必然会符合广义免疫原理,即对原有事物的好或坏的相互作用。

机器的免疫反应:
1、正面:
大大好促进了人类生产力的提高。解放了人类的部分体力劳动。

2、负面:
机器代替人力:从而发生机器吃人现象。使许多下层人士生活水平降低。
机器废物:严重地污染了地球环境。
提高人类生活效率:产生了大量人类精神类问题。
3、中性或不定性变化:
人类的道德要求或社会规范体系改变。
人类体质总体水平降低。
人际关系改变。

可以所,人类的方方面面、地球的环境的方方面面即整个地球的方方面面都发生了或多或少的变化。

至于说对地球外宇宙环境的影响,有是一定有的,只是程度的不同而已。

2.3.6基因工程的安全问题也面临组合爆炸:

基因工程所制作或改造的新类型生命,把它导入环境后,它和环境的相互作用是一个超多因素及多因素相互作用的的问题。

所以,这个问题,在根本上,它是不可完全解决的。

用现今再高速的计算机、再好的数学方法,也无法很确定地预测出关于基因工程新生命对环境的完全影响。

(即事物发展的未来是由现在的状态及自然律完全决定的,但由于决定因素超级复杂多样,未来还是无法准确预测的。)

但也不能太小看了我们人类,我们人类经历几十亿年进化来的智能也是很强大的。

人类会近似求解——找不出那个可能的最优解,但可以去找次最优的解,在这方面,人类还是有些能力的。

也就是说,人类可以获得一定程度上在不是很长时间内对大的方面没有什么害的转基因生物GMO(genetically modified organism),但是至于对长时间后、对一些小的远的方面,人类还那么有能力吗?

2.3.7反馈法(feedback):

反馈法:只能在事后更正改进的方法。

可以说,在很多的方面,例如思考、行为、决策、控制,人类都是依赖反馈法的。

控制论中:控制论(cybernetics)的一个主要内容就是反馈

思考方面:在很多思考上,人都是在想到一个ideas后,再去分析它的正确性,对则继续思考,错则重新再来。

理论构建方面:总是在原有理论上,新知识去反馈,而使原理论获得进化。

2.3.8基因工程的安全问题中的反馈原理:

因组合爆炸缘故,对GMO的影响,人类是难以做到完全的预测而控制的,所以,其中,还是要一定程度上靠反馈法的。

也就是好的GMO则继续发展,不好的则或则淘汰或者改进。

应该说,这种事后诸葛亮的方法也是人类的一种无奈的、常规的方法,它在其它领域也是广泛应用。如一些产品、药品在鉴定时未发现的负作用,它们只能靠反馈来去除。

人类再发达,这种反馈也难以完全消失,只能尽可能地降低。

2.3.9平衡

平衡状态:多种事物可以兼容或共生。

多种事物长期共同生存,从免疫或进化角度看,它们中可共生的产生免疫耐受,不可共生的为淘汰,从而达到一种平衡状态。

2.3.10从平衡角度看基因工程的安全问题:

基因工程产生新事物,必然或多或少地破坏原有的平衡,产生总体上或好或坏的结果。

宏观上表现为系统从一个平衡消失,经历一定时间后,经过新一轮进化,系统又将进入另一个平衡状态。

达到另一个平衡是必然的,但这个平衡的状态或说对我们的好与坏以及达到这种平衡所需要的时间,是存在一定的不确定性的,而且可能还是很大的。这也是组合爆炸与人类科技水平决定的。

守旧者、传统广义者总是不愿意离开原有平衡,这也有很大道理:原有平衡是确定的,人类可以适应以生存的,而改变这种平衡的结果是不确定的、未知的。未知的虽然可能是好的结果,但同样可能是坏的。

但这也有另一个坏处:即未知可能是好的。这样的话,相对来说,也是种损失。

但如果从更大角度看,好与坏又是什么?

而且,从进化角度看,环境是在以不以人意志为转移地方式不确定地变化着的,这要求其中的存在者如想生存就必须有适当的变化,也就是进化。

也就是说,存在物必须有种忧患意识:应对变化。

无意识个体因为生存与否都无意识,所以忧患意识无关紧要。(作为宇宙进化,它以超大群体来补偿——即使淘汰了90%,剩余的10%也是巨多的。)

但人类不可以用这种简便方法,或一切个体自身都是不可能,它只适于作为大宇宙本身:因为人类总以人类为中心的,它总是想让自己生存下来。

但似乎人类也可:人类也是大群体的,对于整个人类来说,这么大的群体,变异是巨大的,担心未来对于人类种族的必要不大。

但对于一个人来说,又是还得想想自己的生存的。

这又是一个分形。

三、广义进化原理

3.1广义进化原理

3.1.1广义进化原理简介:

从生物进化论中,可以抽象出一种更普遍意义的关于进化的原理。

广义进化原理用于分析事物的变化规律。

广义进化原理一些基本概念:

环境:发生不确定地变化。

变异:事物存在形式可以发生变化。

存在:事物的可以一种存在形式在存在。

生存:事物的某种存在形式并不一定适应生存,可生存的是在当前环境下比较适应的事物存在形式,即符合当前环境的生存律。

自然律:所有的自然规律,它是恒定的。

生存律:自然律在一个特定环境(生态位)的子集,它是可变化的。

生存选择:事物有大量存在形式,生存律对其进行选择:适应生存的生存下来,不适应的淘汰。

选择:选择的具体形式的多样的。

生存斗争:分种内竞争与种外斗争。

种外斗争:存在物与其外环境的斗争。

种内竞争:事物的多种变异体(不同存在形式)之间的竞争。

3.1.2广义进化原理的应用:

广义进化原理可以用于分析研究很多领域对象的变化。

例如社会、文明、文化、技术、理论、社会规范体系、物理世界、人的心理、人的行为等等很多很多。

应用实例:

3.1.2.1人的行为:

个人的行为是进化的,可用进化原理说明它的一些规律性:

个人的一些存在的行为,与其环境相互作用,适应的(对自己有某种利益的)的生存下来。而不利的为淘汰。

如犯罪行为,当社会对其惩罚严厉时,发生较少,反之,发生多。

而整个社会人们的一般行为模式也是如此。

3.1.1.2市场经济:

亚当.斯密理论的看不见的手,本质上也就是进化原理。

3.1.1.3理论:

理论的新旧更替表现出了进化的优胜劣汰。

3.2.两种进步方式

1、依赖外力的进步:

计划、指导式进步:类似于计划经济。

也是创造论指的进步。

2、不依赖外力的进步:

进化原理作用下的进步,使系统可以自然也无需外力,自然地发生进步。

3.3进化系统:

进化系统:进步过程不依赖外力的系统。

进化系统的好地进化依赖于其好的进化制度的配套。

3.4进化论与创造论:

创造论是关于初值的。

进化论是关于有了初值后的变化的。它指出了有了一个初值后,可以不依赖外力,而自然进步。

3.5进化制度:

进化制度:优胜劣汰的制度。

好的进化制度可以使系统好地进化。

不好的进化制度,表现为优不胜劣不汰,尤劣不汰。

如在经济中的地方保护,以及闭关锁国,常适得其反,使保护对象未经历适应力锻炼,从而进化缓慢。

以及家长对子女的过多保护。

3.6两种程度的进化:

1、适应当前环境的进化:

使存在物可以在当前环境中更好地生存下来。

2、过度进化:

依靠种内竞争产生的超越当前环境要求的进化程度。

但因为环境是不确定地变化的,这种过度的种内竞争又是一种对环境变化的必要的预备。

3.7人类进化的未来:

人类作为自然有机生命的杰出进化种,优势是明显的。

但也可看到,人类还是可再进化的,或者说是可被另一种更高级的智能生命代替的。

3.7.1人类的弱点:

1、体质的弱:缘于人类依赖智能生存,而又被医术的发达而进一步使人体质减弱了优胜劣汰的进化制度。

2、人类的智能的弱点:相比于机器智能,人类虽有很大的比较优势,但在一些方面,也是有巨大的比较劣势的。

3.7.2预测

人类自身的在智能上的进化潜力是不大了的:它的记忆力、计算速度、准确度是很难再有大的进化的。

人类或者会走与机器结合的路,或者直接由机器更大地在智能上进化后取代。

3.8基因工程与机器智能与进化:

从进化角度,基因工程是人类在进化自己。

而机器智能则是从另一个角度智能的进化。

两者都可看作是进化的工具——进化所依赖的变异!

© www.xuexx.com